更新时间:2021-06-11 13:24:17
封面
版权页
Preface
About
About the Book
Chapter 1 Introduction to Clustering
Introduction
Unsupervised Learning versus Supervised Learning
Clustering
Introduction to k-means Clustering
Summary
Chapter 2 Hierarchical Clustering
Clustering Refresher
The Organization of Hierarchy
Introduction to Hierarchical Clustering
Linkage
Agglomerative versus Divisive Clustering
k-means versus Hierarchical Clustering
Chapter 3 Neighborhood Approaches and DBSCAN
Introduction to DBSCAN
DBSCAN Versus k-means and Hierarchical Clustering
Chapter 4 Dimension Reduction and PCA
Overview of Dimensionality Reduction Techniques
PCA
Chapter 5 Autoencoders
Fundamentals of Artificial Neural Networks
Autoencoders
Chapter 6 t-Distributed Stochastic Neighbor Embedding (t-SNE)
Stochastic Neighbor Embedding (SNE)
t-Distributed SNE
Interpreting t-SNE Plots
Chapter 7 Topic Modeling
Cleaning Text Data
Latent Dirichlet Allocation
Non-Negative Matrix Factorization
Chapter 8 Market Basket Analysis
Market Basket Analysis
Characteristics of Transaction Data
Apriori Algorithm
Association Rules
Chapter 9 Hotspot Analysis
Kernel Density Estimation
Hotspot Analysis
Appendix
Chapter 1: Introduction to Clustering
Chapter 2: Hierarchical Clustering
Chapter 3: Neighborhood Approaches and DBSCAN
Chapter 4: Dimension Reduction and PCA
Chapter 5: Autoencoders
Chapter 6: t-Distributed Stochastic Neighbor Embedding (t-SNE)
Chapter 7: Topic Modeling
Chapter 8: Market Basket Analysis
Chapter 9: Hotspot Analysis