会员
深度学习及加速技术:入门与实践
白创编著更新时间:2023-08-28 19:54:07
最新章节:封底开会员,本书免费读 >
本书紧密围绕深度学习及加速技术的基础理论与应用案例展开叙述,实现了深度学习算法设计与硬件加速技术的有机统一,是一本基础理论与实践案例相结合的实用图书。其具体内容涉及人工智能基本概念,神经网络数学基础、神经网络基本结构与学习策略、反向传播算法数学原理与训练机制等神经网络基础理论,以及一些高级主题和实践。本书可作为从事人工智能领域算法研究、架构设计与应用实现等工作的科研人员、工程师以及高等院校师生的参考书籍。
品牌:机械工业出版社
上架时间:2023-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
白创编著
主页
同类热门书
最新上架
- 会员
玩赚ChatGPT:人人都能用的工作好帮手
本书以工作场景和具体任务来驱动,包括53个场景展示、85项任务模拟、237次提问示范,让完全不懂技术的小白,也能成为ChatGPT工具使用方面的行家。本书通过详细讲解具体任务的提问与追问方法,让ChatGPT成为每个人的工作好帮手,帮助人们提升工作效能,打造超能个体与超能团队。计算机13.8万字 - 会员
机器学习实战(视频教学版)
《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字 - 会员
ChatGPT:AIGC时代商业应用赋能
2023年以来,OpenAI相继发布了聊天机器人模型ChatGPT、新一代多模态大模型GPT-4等产品,以强大的能力俘获了大量用户,颠覆了用户对于AI的认知。本书以ChatGPT为中心,对ChatGPT的相关知识进行详细的讲解。本书共12章,前5章从ChatGPT概述、技术底座、内容变革、产业格局、商业展望5个方面对ChatGPT进行了解读,帮助用户全面了解ChatGPT,对其形成完整的认知。第6计算机12.8万字 - 会员
被算法操控的生活:重新定义精准广告、大数据和AI
这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字 - 会员
空间智能原理与应用
本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生计算机23.8万字 - 会员
大型语言模型实战指南:应用实践与场景落地
这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答、AIAgent等各种强大的应用程序的著作。本书得到了零一万物、面壁智能、通义千问、百姓AI、澜舟科技等国内主流大模型团队的负责人的高度评价和鼎力推荐。具体地,通过本书你能了解或掌握以下知识:(1)大型语言模型的基础理论,包括常见的模型架构、领计算机11.2万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
情感计算
在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和计算机23.3万字