
会员
机器学习中的统计思维(Python实现)
董平编著更新时间:2024-12-27 19:20:38
最新章节:4.5 拉格朗日对偶思想开会员,本书免费读 >
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。
品牌:清华大学
上架时间:2023-09-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
董平编著
主页
同类热门书
最新上架
- 会员
大模型项目实战:Agent开发与应用
这是一本面向初中级读者的Agent学习指南,作者既是资深的AI技术专家,又是经验丰富的项目导师,融合作者亲身实践、培训反馈与官方资源,为Agent使用者和开发者提供了快速上手的实用指导。本书从基础知识、操作和应用开发3个维度循序渐进地讲解Agent实战技巧,分为三篇:基础篇(1~2章):介绍Agent定义、发展历程、常用开源技术、主要组件等基础知识和开发环境的搭建过程。应用篇(3~6章):从通用型计算机7.2万字 - 会员
ChatGPT进阶:提示工程入门
本书共分为9章,内容涵盖三个层次:介绍与解读、入门学习、进阶提升。第1-2章介绍与剖析了ChatGPT与提示工程,并从多个学科的角度探讨了提示工程学科。第3-5章演示了ChatGPT的实际运用,教你如何使用ChatGPT解决自然语言处理问题,并为你提供了一套可操作、可重复的提示设计框架,让你能够熟练驾驭ChatGPT。第6-9章讲解了来自学术界的提示工程方法,以及如何围绕ChatGPT进行创新。计算机9.7万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字 - 会员
巧用ChatGPT轻松学演讲
本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。计算机19.1万字 - 会员
社交网络信息传播模型、算法及应用
本书系统地阐述信息传播问题中所涉及的各种传播模型、数学优化方法以及计算方法等,并通过对大量信息传播的实际问题进行了建模与分析。该著作将为人工智能、大数据、管理科学、运筹学、人文社会科学等领域开展相关研究的本科生、研究生以及学者提供重要的参考。计算机16万字 - 会员
巧用ChatGPT快速提高职场晋升力
本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。计算机11.4万字 - 会员
高效用DeepSeek:职场逆袭的实战指南
本书以DeepSeek应用为基础,讲解了DeepSeek在自媒体、咨询、营销、教育、翻译、职场、编程等多个领域的应用。书中通过丰富的案例和详细的指导,展示了DeepSeek如何帮助自媒体人打造“爆款”内容,如何为咨询提供高效决策支持,如何在营销中实现流量裂变,如何重塑未来学习范式,以及如何助力职场人和企业实现业务增效等。本书内容通俗易懂,案例丰富,无论是AI(ArtificialIntellig计算机8.2万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字