![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十六章 第二型曲线积分与第二型曲面积分
§1 第二型曲线积分
我们已经熟悉了“对弧长”的曲线积分——第一型曲线积分.这里再来讨论“对坐标”的曲线积分——第二型曲线积分.
l. a定义与性质
一条参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0340.jpg?sign=1739484584-wHQV15uU7Wt0vKvQkfaRTCZ9bIsiNOn2-0-a12d4e3746db871f98fade539ad55ceb)
总是可以定向的.例如我们可以选择参数t增加的方向为曲线的正方向.指定了正方向的一条曲线被称为有向曲线.
设在空间某区域Ω中有一个力场
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0341.jpg?sign=1739484584-Dki0b5asUXj3oBRZH9qGZ9qrGy8VbPxS-0-5c8aa852f62f03e6080d8ad1a050f91a)
设有一个单位质量的质点在这力场中沿一条曲线γ从A点移动到b点.我们来考查力场对这质点所做的功.请注意,在这样的问题中,应该把γ看作是从A到B的有向曲线.因为沿同一条曲线,从B移动到A所做的功,与从A移动到B所做的功,一般是不同的(符号正好相反).
设曲线γ的参数方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0342.jpg?sign=1739484584-s92sVkI1fe4FXoQH485Mj8kXNGVoIbEo-0-5ef0ad9a705c50ac4fbd79c8bf76634e)
给参数区间一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0343.jpg?sign=1739484584-RhiWyibxhGf8NGw8ZTeRy23FGtGa5Udz-0-d68175594068f20b1535b8600942a8ef)
于是曲线γ被分成n小段.在第j小段上,力场对质点所做的功可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0344.jpg?sign=1739484584-oYtJXUfYmsUUKMUauxwyDdVCiakxXpyu-0-5f4ccb7dfd85531c8d4f321acb271021)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0345.jpg?sign=1739484584-wppWboMEctsB2kqRHtrBtMY3Dk4qU0P3-0-c9b572a61c74f29c7583a7ee6a94c36f)
于是,力场对这质点所做的功可以近似地表示为:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0346.jpg?sign=1739484584-BanGodv3kr88GNDXV4zZbwPJ3C72P1fJ-0-8c90f078d39c35b1e108238903901250)
当|π|→0时,上式的极限就应是所求的功W:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0347.jpg?sign=1739484584-LtLGVS73cbIjmWtOfQTqWoGu7qtoONza-0-ff8f9bbe476032ff6d8a3b62629b6b0b)
设P(x, y,z),Q(x, y,z)和R(x, y,z)是F(x, y,z)在三个坐标轴方向的分量,则(1.1)式又可以写成以下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0348.jpg?sign=1739484584-Nj8iU5YIBDvnWLKrZcNSoWYEDUEBOSfM-0-e650d7bce2e360d231f3d6006e750f80)
从以上讨论得到启发,引出了第二型曲线积分的定义.
设γ是一条连续参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0349.jpg?sign=1739484584-pg2s8rnxch87vKM57lGwqziptOsMMTAf-0-e9165e8c94f0955ccb3a8d385c2bf370)
为确定起见,我们假定参数增加方向为曲线的正方向.
定义 设γ是如上所述的一条有向连续曲线,P(M)=P(x, y,z)是在γ上连续的一个数值函数.给曲线γ的参数区间[α,β]任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0350.jpg?sign=1739484584-wVPCPhkLRutpD1EbV3QLR8tNXhMj79DN-0-d8e7f49b4622383a92703220a16715a1)
于是γ被剖分为曲线段
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0351.jpg?sign=1739484584-XX1tqadWpVkcT9U8JC9IO2ifbDObSSPG-0-6d1a11e5d2a766e1c1b0048e5ee03f6f)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0352.jpg?sign=1739484584-RrrC6HZoCY95qX2dLYa5BZ5tSv0lnlxu-0-412f525114e66e87088eee499395b952)
在每一曲线段γj上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0353.jpg?sign=1739484584-sHcfdJWE34mYTdV5PN0hiljyGbvjsO5Z-0-49c5b362a0a7be7c2c90279db43b700a)
然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0354.jpg?sign=1739484584-twZU5JzqdW4MrpydHMTcGniewVtMzYcF-0-e44f0058fc791f040d574472dbafd61c)
当|π|→0时,和数(1.2)的极限(如果存在)就定义函数P沿有向曲线γ对x坐标的曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0355.jpg?sign=1739484584-zXqTlOiyBWnshW3Ivl9u1QlIicuIRLyo-0-d68a64caa201f52eb84ebcdec326f1ec)
用类似的方式,可以定义函数Q对y坐标的曲线积分和函数R对z坐标的曲线积分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0356.jpg?sign=1739484584-BTvtu1QTyG4iH4Ew4SI1F5AsEmsyrRIp-0-5a1373854fe8631a2337986fbf478e43)
以上这些对坐标的曲线积分,统统被称为第二型曲线积分.我们还约定记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0357.jpg?sign=1739484584-rcjlT05AHJSK6V3h4SgXCMdJkNV3dH3U-0-2e4c71eab03e823e3d84ef24a8e30167)
这积分的向量式写法是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0358.jpg?sign=1739484584-QK4rDjaE0ZfNfzN8nkub109VljmXYHw5-0-c847849536ac36b469bd423fd1012a3d)
其中
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0359.jpg?sign=1739484584-espDJw1zKHVnaasLlVcvHmi2Qusk4bAh-0-ca4013d13eefd3659e00eb328f9dc0e0)
如果有向曲线γ的始端与终端相衔接,那么我们就说γ是一条闭有向曲线.对于沿闭有向曲线的积分,常常把积分号写作例如
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0361.jpg?sign=1739484584-AMWBep4DKnf6nQQtmkEZyIP3kKxC63VW-0-e203ab1bb49bcba4aceef9e151eeb0c5)
等等.
从定义容易看出,第二型曲线积分具有以下重要性质(假定各等式右端的积分存在):
1.线性
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0362.jpg?sign=1739484584-r8AJfIjVzLS2nysyJKl9G4fEYUKFB5sf-0-58475ae623e781ac5f89541b9c881590)
——这里α和β是常数;
2.可加性
设γ1和γ2是两有向曲线,γ1的终端就是γ2的始端,我们用记号γ=γ1+γ2表示由γ1和γ2连接起来作成的有向曲线,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0363.jpg?sign=1739484584-FxqORZ1ImsmDsJAyrYeQNaedpq2gokgg-0-37c98fcabc2d0b424ee250e20e9e4337)
3.有向性
如果用记号——γ表示由有向曲线γ反转定向而得到的有向曲线,那么就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0364.jpg?sign=1739484584-uI2FTabxsEFr3bYp92v3YsFvGgBmy1vo-0-1d82370ebd42d3e4416052c3d1b494d7)
注记 平面曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0365.jpg?sign=1739484584-pJVbZEtwHtantGd6zZ8a78koD0sNm0Zc-0-b74333b7b271ea001f84654832837da5)
可以看做空间曲线的特殊情形.沿这样的曲线显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0366.jpg?sign=1739484584-6Rlr2OTxiHKTIBfrsNilw08Urfdn1ga7-0-38c25d3b9f92b4b7181a469f48aaa841)
——因为沿这曲线因而,对于平面曲线γ,只须考虑以下形式的积分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0367.jpg?sign=1739484584-5h9C5Kwr3NH4JfMP1DGmdlXQ4YcDEL8g-0-2dbc24c94f96c4cd0645a2f2211af07e)
l. b第二型曲线积分的计算
设γ是一条连续可微的参数曲线,它的向量方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0368.jpg?sign=1739484584-XmNCO1573zMIfgTfZUU2LRwdZggtUzp9-0-05e7bdbcbc0c956d202dea04f84a158b)
用分量表示,曲线γ的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0369.jpg?sign=1739484584-uoSQuU0ogEV6CKmzNUREA4WOhSHsgVzx-0-3eac5f1cc4acacc0d2054c088e719241)
为确定起见,我们假定γ以参数增加的方向为正方向.
定理 设γ是如上所述的一条有向曲线,P, Q和R是在γ上连续的函数.则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0370.jpg?sign=1739484584-y0k734Ix1p4loGYfNVyK4XgRyE9xrcR2-0-eb08660abd3e314af2f12740a5a1f0cb)
证明 因为x'(t)在闭区间[α,β]上有界,可设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0371.jpg?sign=1739484584-vmJirep29PNJI0DAfDBc9KrJCejRCpAv-0-4de5c475df7a062155f65ce7f717d5c8)
又因为复合函数P(x(t),y(t),z(t))在闭区间[α,β]一致连续,所以对任何ε>0,存在δ>0,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0372.jpg?sign=1739484584-0hx4F0e8JIVRj2YYAlMxcAQo3ImRJDQD-0-f594bb18608c04f4dd83f23dd3ede737)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0373.jpg?sign=1739484584-vcqbAcstRWirLDQXWPf04SnX6RL8HcXg-0-6d7b2882bc1a94ff610e5344d1e8a4c7)
对于[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0374.jpg?sign=1739484584-cVn3Gm5YuLkJwvldKsIJmkiBM7WJEdcx-0-43257b3dd92b0ce18761edda51fd1663)
和任意选取的
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0375.jpg?sign=1739484584-4PsIo5uDiTObJH60dipzn1LltMVkDQFF-0-a2da6df78dd97ab8a8826c2fc6604adf)
只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0376.jpg?sign=1739484584-qszrNqQ7EDLcIlkiwV4Z1yIBC4ZEcFUR-0-b1cbb56f604e26023decd77aa916e999)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0377.jpg?sign=1739484584-zW0qGDYXPEwba6Gosw9YeHVTDowv3Ajz-0-9e4bab6b08f68303f510cc7670327a46)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0378.jpg?sign=1739484584-EeDrzgmjeVLl78p3RUI8WoCDgmqX61jf-0-cb2d37f135a141e06c849c9b0193fb28)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0379.jpg?sign=1739484584-UVM6T7MugVjxcMfU3yT9VFcQ4OwIYK0w-0-e57833466beba7a007a06f323af44e26)
至于对y坐标的和对Z坐标的另外两个积分,可以用相同的办法处理.□
例1 设质量为m的质点沿任意连续曲线γ从空间位置A移动到位置B.试计算重力对这质点做的功W.
解 设在OXYZ直角坐标系中,OZ轴是竖直向上的.则功W可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0380.jpg?sign=1739484584-B3QN3kIrAGpJ1V1UWecdZVrCKbgHIiAP-0-a6032d04ece96468e9459395cfbfdadc)
根据定义容易得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0381.jpg?sign=1739484584-sMJPt8lWJcXduaeFg1plQHznIp61yQWN-0-23a981ff106644dc433acfca53c1ae46)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0382.jpg?sign=1739484584-5c1qc8X0KajgkCEiju93NvHbJbnMeQm4-0-4f0d3afb8e1303b375df5689424ffc4d)
我们看到:重力场对质点所做的功,只与起点与终点的位置有关,与经过的路径无关.
例2 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0383.jpg?sign=1739484584-KZ9C2Zh2RqBnfpPBrJSaNr9jPjercua9-0-0389ea0fcb50bd5268fc8131122f7853)
这里C是OXY平面上中心在原点半径为a的圆周,E是以OX轴和OY轴为对称轴并且两半轴长度分别为a和b的椭圆周.
解 我们写出C的参数方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0384.jpg?sign=1739484584-KDSfydUTncS3WtR4mDb72peVmyVXoF7U-0-ea5109554e73bc0cd2a8bef180858f20)
用上面定理中的公式进行计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0385.jpg?sign=1739484584-WM7UlEdW8FY4tRSFK2gmQwduzupK7IaZ-0-c0ce6a4ceaa0eaf4e7e6293f3acb5caa)
同样可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0386.jpg?sign=1739484584-6KJHqfgHGNeohnSV7CwztYuhZUDkyorM-0-540886348872b443c4ac7c5ecad5908d)
在例2中,我们看到,对于γ=C或者γ=E的情形,积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0387.jpg?sign=1739484584-1eKY5OuYeS9nbYpSStawYmahgBu89AXz-0-bf070f2f504737eac20fecf3855cb7c4)
正好等于γ所围图形的面积.这一结论可以推广于很一般的情形,我们将在以后作进一步的讨论.
例3 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0388.jpg?sign=1739484584-0EWKJuXNPdwHeaXDJKikmE4ebzqMAkpj-0-9ada8495725a3465ad7e224e3d4768e4)
这里C和E如例2中所述.
解 用参数表示进行计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0389.jpg?sign=1739484584-E65LsnuabUIwumlCkETyr6sOmpYFYC3v-0-af4e4df935b7f1e6dbd8e93876550abe)
同样可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0390.jpg?sign=1739484584-V5XCQjdUmDVFXGTApQBh6fWiumK2T0DK-0-aff72ff753943159f3836fe3b3438933)
例4 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0391.jpg?sign=1739484584-j0MxyLDrjy1VGdeKY2a3YhLbmmoHu2Ju-0-2462ddbf4aa52bba0cfac9d1e401016a)
这里C同上两例中所述.
解 用参数表示进行计算可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0392.jpg?sign=1739484584-fc5UIwfs6yAxYVQKxo6N7ncRintBtFWu-0-be525aea4e89d8b4b745e025ef7bdcae)
例5 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0393.jpg?sign=1739484584-XFhZAJjwg7uoYi80NIRUl8JVVyw8BeY6-0-75b5daa6b970fd8957e0125bff4acabe)
这里H是k圈螺旋线:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0394.jpg?sign=1739484584-pDUDnDeyN5ylaJnneU3UnT1OZpSupVhi-0-46fef4d97656ceb6741213bacab130ee)
解 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0395.jpg?sign=1739484584-5eFNDcUz47jTMetMu4KHm4zzGX1pyZkR-0-a8aeb1630aa7ccb0d0042de088a4cd8b)
l. c与第一型曲线积分的联系
考查连续可微曲线C:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0396.jpg?sign=1739484584-ARUs7CAakR3pRU79fJijepk12VWS3t3E-0-aefedf6f40929cb3832ed5c4bedbc603)
这里假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0397.jpg?sign=1739484584-0WNl2s2s86pVdPABZWXoglYSjNawyTp1-0-add0235bad26335cbd678db966e7c66a)
我们约定以参数增加的方向为曲线C的正方向.于是,沿C正方向的切线单位向量为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0398.jpg?sign=1739484584-TcVqfGJyihXLYNO3fNp4av7kP3it5T2v-0-f105d6ce7ece7b0944e03d95a4772b35)
我们把这向量的分量cosα,cosβ,cosγ叫做有向曲线C的方向数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0399.jpg?sign=1739484584-XSWcEYHtLSCOWkT7kKaLAlgeo2BsYKeR-0-4d5eea97782ba8639868fab0a928c28d)
设函数P(x, y,z),Q(x, y,z)和R(x, y,z)在曲线C上连续,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0400.jpg?sign=1739484584-oEiFXvivZ75wTJiHEtCMyxZoki5ddwr2-0-c69367720fe736402c7d9d8fbaecc38b)
这样,借助于方向数cosα,cosβ和cosγ,我们把第二型曲线积分形式上表示为第一型曲线积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0401.jpg?sign=1739484584-IsnPKxuYp5pqORUDhnrvPD94fVJzMQIe-0-1bac5b3e2d25639abd10e5032cbc9364)
请注意,第二型曲线积分与第一型曲线积分相比较,有一个根本不同之处:第二型曲线积分是有向的,而第一型曲线积分是无向的.在上面的公式中,之所以能用第一型曲线积分表示第二型曲线积分,是因为在被积函数中引入了方向数——当曲线反转定向时,各方向数都改变符号.