![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739655973-CpQ3g71mBSvPGikWVzpg4Yh7Ibnd32ph-0-d17d9cbfa40736a4c17ed44f2cca3ea8)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739655973-olD6XwMDbiJIQMNmpXGxetmPbtO5NPpJ-0-5513a88647904ad14e691ad43ed0fcbc)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739655973-QjCjkbPfbVnmKljQc2lCjHSwoANfsqRv-0-fa9d1df41870d37b9e390bb2785593ef)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739655973-sEb5cSezDQbkbwjnaNWAAcbv2dCKz4ut-0-7bfd69212aa848465dc953d31edc81df)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739655973-wjwDHLBkl3y5pALjxJ2UncZdAKt633sT-0-5257e0bc2e6246e5f40a618f6340755d)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739655973-I6LaX6DDR1bxyZ7PQrD3kYU3Vmgi7lhh-0-2142ca8a1f122e34c9b0d1130289aee5)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739655973-CipUG6SEo6MBnWR4rjjdQyJs5up3NoZJ-0-7629da4c6973ac6d9ebc1ce50a5c0314)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739655973-PuF0z0PbiuK4ocN80MGGYYrzYuVJ8sPS-0-f57b9bb7add1e41a7e206c50638d5d39)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739655973-yhsvZ3vqwvNnUYmm2RIRmw4srW0qVt9I-0-daf237d7c5b4fd8ca18d090094624b86)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739655973-x3kUdboao5NRvqZP8N7eVT4SyUC6Gw8H-0-968e71ef74984eb87b555fbddaba8c60)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739655973-0eUMTtRykiOlSE42WvW8EGuu9Vyjh8yv-0-210f0790b5e09ea88fc08e0713e39390)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739655973-uU2EykCDN4X2CdMh3Njsjn8uys6wDJny-0-4edb49b0dca8aa6f557d205c15d44846)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739655973-dSMRLqaNJXuToyjfOUvnC5prMh6SkulL-0-ac2d0bf74ed09ebf73fc356fd203762f)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739655973-6YvURWGItI7R7R5uXHFixUrRP6bnRJGJ-0-1a4f5a669102537d7ab1d073f0a888b3)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739655973-ro3sUeHKf89rNtBxsSh1tfxw1hMUqIwl-0-a378ceeba9774fecbd8d01bb6bd9ff11)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739655973-YyqFxV1jcBos3fNqRuNLsA2IAI6uaHoE-0-be4270c7f293a50acbec494599c34d65)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739655973-RLGeHTbitWs2RQMuCESi51gTJHKBBB3M-0-63861383362075c682cb9586e22891c4)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739655973-0p9oSzBB2JS0wpbxqGBcauy1EvwayQsR-0-e5d35000cc8dbbcef410d43ced4f3b8d)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739655973-rrRubWLw5YSyos33oZkegQAdAxkCjtx6-0-dbf270ca35cbb2b203754f4a3fd51ede)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739655973-up2WfAUZ8U7EWo04zNfiMR8uPuv9lR8w-0-836ef111e972acb6afea8d6325dbdcdf)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739655973-PfKeO7UevRTGUyLWwVvs4x0V9DyXbOmr-0-543737315814506050dc7c89b9a4b34d)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739655973-Qi8WuFCA4mXoTIPQ6CpbgyCkWFI5YrBu-0-de1579efe797c2a631793bc802f869f0)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739655973-XYTK0NqCViRzmvt3PRywkuyOjut5p8MS-0-9ca2b2cc247a5d147b73be59e78235c9)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739655973-cIHzR7rkrQ6bujroeajv6b4KxMxsdIPg-0-8dcbd6d18077cc9d2f0d65b307bde4b4)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739655973-Dh9rdQWinnAMJ7ryuqvqQO1HV1gVsrFM-0-e275e6a2abbcc01e97a9d060afedd859)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739655973-mhsX1FKHHbs1rhLkzugH9YywgytJxEHu-0-48095782a309a27d17a5da7f23935dab)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739655973-rd71GC2k9BlBY6jAXUFKriF93d02Qjad-0-592d67ed1a32ce943cf82bcdef3dd9ac)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739655973-MdDQf86za0SJwzmGSljpxg47z1mhsDCp-0-e483bd945d6433dda7c2a990466f0fe9)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739655973-20rg2RmJ3SfIK4rHnEsgNlLAjuuLuyuJ-0-8b3a46c999d5c7d8c439ededce0b7c07)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739655973-vC5VRQoyRaK8OP8xfwhqedoilxAEATfm-0-999c08fcf05db384a47814648016f46c)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739655973-8bLEBLVNrQwrWY9MmVkpEXkZPsvT463i-0-b037484b1a246a1060ed8372d7bf0768)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739655973-LC2eLD0k3XrrENdg5B0Zp1camJS9yCbA-0-07e3cfbab6a25bb615b341fd4649045f)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739655973-18l0Q8aXfvEuVkEpaLlsLbuMsrnPJqaP-0-f557a10edacc4cef7b490c1eb198d02d)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739655973-qG2mfuI7sCAwBnDXS8ash4YX6t0HGOTF-0-40332dc4dd96831b6086d16682e1ccb0)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739655973-NnohgVLrfZIFnpGkie5vokoPZqjvrB3s-0-5f97e0aed103f848767f0d0a9a0234ba)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739655973-wWLqxfazATE52NXwi794J5zXjKOG0CA9-0-ea09a713f205615683b5391a81c5416c)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739655973-mJZpTbEQMCGsL2oYWblam9rnC5zVx8Wv-0-4dfaaf5a9cf8b531e2175ad545c7b2db)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739655973-pK6kFggiEiQ13ciJgRrwTjMLlVcAzHdi-0-c718d0c64752d898d64f6eca8272dc4d)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739655973-zmqRdttIBwglgYHRpN7sJ0tKE5t4Hq3w-0-2ed0866a288b9ee23370a8fda3d88f92)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739655973-DWlgGgJ3K5lyYtzgHv825q9vnAyOqJuS-0-47db4379176858eabf6a8aa210af7fe4)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739655973-btppuYzLmHAa03Qcbus5JnruGxB9fYwq-0-d303a5d1df32ba7812bdfc0dfa61d892)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739655973-9bZQm9EM1FI6kXDtOXCSrP6aoVDJKyVT-0-97cb6061b9954db8dd89524556c151d4)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739655973-TojBdqyGiolFMQTiC0M8KtAjaBYvcfKj-0-dc81b1622cd981f1b077066e807e9297)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739655973-CYmC8qJ64RwHEMGgRLlBU3cUVyb3uR0U-0-edfd6f67bdc94da0d8e824087407e8ef)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739655973-ou4ErE5q8SU7XmviBg36sRHPglZ8Q3Vd-0-346bf325d2edc3426b36297503ce26e8)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739655973-Dz9XSQuiC7mhJRUY7lkgTkaeCURtyFEc-0-8e6f4f3bb99bb2b5fe89960b3ee7504c)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739655973-1GzhVl8wwaRD4dVHOcZZJY4Y14Lt3xDZ-0-63e6b0485778d3fa2f92216267529b5e)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739655973-DQuhsg2NL5nhtUZG3zUiFF1KpZDGQqDE-0-f190f219bf41c9b0c2b93f5acd989842)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739655973-dC37wLQwGG7YnawVT8hoRuwMeocAyKaH-0-610ad945da717881b4b253a1eb98e72e)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739655973-R98laW8zjkPsvoe2tnXQExpwEdsWQYdF-0-b9a0d6242b3481068600104bc99cfac9)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739655973-XP7s0j3wtEVII1ADP4x9qXm9wr4oKfuM-0-a90f0768273c0a7c7bb6be54b799d504)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739655973-ClSLE7FssQKil52KzI9os61UiuaAN6Y0-0-fbdf21c125830a0377b39e8107bf9ab6)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739655973-uunPpEXb0YURMpezVu5AiQkcLLbyh3XQ-0-75cdc11c9c7c16f33ce12541510889a4)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739655973-VTkVq3kf00mvIC4N9p58fmYKw75o6k62-0-2ed230c0f9695152a1d5b95498c1c58d)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739655973-4HgUTTyEd4X3c5Pu8m2Ul4jkwSreedkV-0-846d41c1f0b714e9c1d68b4274f98c7c)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739655973-al5xUHBRGOcFimNETkmtq8v0zDPlDuaY-0-8fc2e9b56d17fe63fd334e65ddef77b7)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739655973-SUNTMnHeqT3M4JgOCXdXS8luay3XTqdB-0-f4a2159bd80d4617c8ed71b1f548d96d)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739655973-Wd4SJKnRP61JBKn661EKwRN20YbUDStB-0-1fe88b9a4c7d89b2f7cb509c3c6c817f)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739655973-i056seufbqTJuYQA6OR9EMOocIFvncDT-0-138b679b3f91ff6150ee1d16610c6a74)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739655973-nDkl3NtNLYUKBVLOgb44qArSCQaM0Utd-0-f542496a6ce69946f1787ecb0f884436)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739655973-WHj10ePF6olptqGlftZXi0yWUwXOYI9D-0-dca383cc28daab0f51ff27f97d8e9568)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739655973-MjEzhCa1zWLfwB68OLFnnfw9DZNGeFDE-0-03b02eb07826c5df9ee2dfe660d65ec8)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739655973-jTYQQKb5ea1whrm8WW5KhHxNsv2sPMME-0-1394d7a674284e55e48e208522beb088)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739655973-qYzEBmTyKDCigL0ck0QV0nuF9oXMegkR-0-13620a86b371e6e8a94fc234052d05d8)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739655973-NNOCXnG16r1bLfUpVDzo36SEGP3J1z2X-0-e1dfb3f73dc3858511f93a2e234e4bc8)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739655973-hfMTR1qqewIY7cxKVJP1L0qzPMpei8dI-0-8179479465b3588a8c532f1f1b10fe63)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739655973-DeYskzaF0fxmlq8NNsWh1VxtMsmCf0rk-0-d211e7449f15a4843b109b8fb8621500)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739655973-MFpmQDzPLe8DS2xAybkcIUIOqkY8HJaD-0-3e7edd4608041136fbc8b19caa8d1722)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739655973-DlnDQrf5EE9iXHaChBH5dBz5FPAgqaCS-0-fc779f6574bc4f5e197268167c48f472)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739655973-bhvzr6ggTX3SdvoTujQXb7NRsAlqKKyZ-0-ffc63323f1a6a2cb93a214761bc245a2)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739655973-rk5Mmk1uCG6Pa2vuy9YdG2uYlClLTE49-0-b3b44b3f60b220dab989767bb0dc5e0a)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739655973-J3wbAswfyV8Ci5AVrgG6ACDXKblTs147-0-169d5c486692fcaad99639140673a5d9)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739655973-Kvny8E3yiMshsOrtdIdQfeG5y6fhXHGY-0-02147989e8ecddafaf8e7fa682dda1bf)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739655973-ti6WR5oJDluuy6JfvgbcnpCRqR3qRNC5-0-0985f9b5a772b5986d27e63e5bb03348)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739655973-08JIAE4yklVDS67WZjjDj2Y3VtNtepbT-0-53a72aba522cbb0ab677da6e2c7df865)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739655973-GvWaf9WeRLXitEGOblM5o2phjCR0mvoa-0-43e1f6d1d3d2bdd890409eabf170d024)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739655973-PcHxrvEOOnp9ivjvzG2Wb3vwqP7eeKV1-0-8c669d00ac048496a192309068912c29)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739655973-OmSNyhIvyUeEc9MfY5yoqyg6zm7w8EGG-0-75ddf4b0bb4e365d313dcc86ece18f85)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739655973-YNxBAVc8HBkkRKc7IF7zzL58h096iuCD-0-ab7bab311d00de7d3d1d97072e7d85d6)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739655973-Ru9YMlHkfsJdt3mCpGuFQ3OlQRwBenwt-0-4a557b3180305e26aff576ac48df2214)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739655973-4Ofm5FXxDi4VjPrxJkGcXEjgx1JpwX7p-0-b9a8d378dd92b84cede8f23e0e39b259)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739655973-1f1GSpITHv2l6ANgVUcBcgl7kK3OtPex-0-87ca38611922e1f5426bc2bc0c34112a)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739655973-NYE9lEtDZKI3iY9HAU6wBL442Jrvur7a-0-781c0d70fd01215b2e41f558aa299457)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739655973-wjQP4Ii81kwVys6CY1nY1MyEgRF6S0Ox-0-e8c66ce18c74bb89962b02b8000c0aab)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739655973-sc7L1bzJ9QOaQ0ab9uWAv31Koshqn23h-0-147e5bfeb9f830d40aa353d506215dcd)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739655973-k2mJiCkQjPl0HHaXWgc6ieyfEoPgQnyQ-0-d7a12fa5134572d867726f3e6553cde7)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739655973-ab92fbjJPFOR4o0OqeWQl3fi3x92kAx7-0-a2a955e1330d238ff74c5e7f778e18e5)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739655973-TqHpL3MKWR72wqTeDYIKZ5zoe5pJPzZ3-0-39a443e6a0a4b92534b79bfd2247c5b8)