![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1739656782-MLAg0yAUbXCRIX59q3Dgrz8wA46YlZSo-0-825bac2304660795d5d23b9e24924b22)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1739656782-lcEtnTWcn8DG8b45yN4KpU8nhzTnigmF-0-0c88c4f0ffd826702ab29579149efb1a)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1739656782-oWLQE2rfcozzOQOLTPcfYfZhvsDRwWb2-0-451b8a9b1ecc649fba9f15f8333f2ac7)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1739656782-49MBiryJVvKbUl1kYdV7l2jhZOvFTc7G-0-ffffbdc1ee63d2ab418fc1cacb21ea65)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1739656782-AqrJde97NwLABTW58edDhn7dhk6JPIqc-0-76eb127ed1916f5e8825dbaf4df8ad0e)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1739656782-5QrZy22KNZjCDJj4ntishhRENoxeWOXS-0-abb6b252acd1f47ca1a53666b992dea9)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1739656782-AshD1e9tPNm7WSTaLxwmFXxJI2ESHtbz-0-79b872c3ff8e7749d232fadbe1bb6ba5)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1739656782-vzgzODMRkdLHbFeyf7LRJyhVif60w66N-0-c8ec52760dc7c8856fc20d60524c1ea8)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1739656782-I1yUAuN87g8XIXU81vYRF20yOd8TxiWg-0-903881c4c69762b5f5b2f5d9af94be9b)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1739656782-yYoAr5NxHaPXEnk1p4EZ3z9jaRlSVGdQ-0-ade5e487878f2e9d9b60ff43a2c87436)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1739656782-pEqHdHPLag5m8YEJG7YlisfwcT3Jlegw-0-359cc75b43a61c7ee55160d5eeb1807c)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1739656782-rMwXOLdDNmWdcqHdagyMbHW3fNzaZilO-0-6e3bd36c721f54c0c90ca59ad58ebec5)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1739656782-mfOcugirxmxlt7Gfjt2WrIAQBlx9iQtd-0-2c09637c9393c1ca7a6efe0526c6da0c)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1739656782-Kn9WVuSCQueTVVGfYwY7lcm400ief8DA-0-569443fa5af56793d5ca58ba77a24743)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1739656782-b3m5mo4jYNo8VL3FbkAJYIkEv4qg8cwG-0-48df8e011a4d957a58e38d34a32b27c6)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1739656782-qAjnox4BufqDJ0WxXR7h3gZCkeweh8kp-0-7892efb7ebfe496b1db322a6695ffbcd)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1739656782-y4KzShkR7lyLd24zNfNGBPHny7PZf4uN-0-95c6399978ee7203981e54f21eaaa5c4)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1739656782-Lx3gYoZlL9vV8LddGJOWel4IPCIyUfba-0-e73b53bd672391f6deb0106c39ffda32)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1739656782-kZq3LH7FCR7eGrg9Owr1EcHTtyOPx5HU-0-01090a600f16bbed4fe955838c0db380)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1739656782-01O7nCTtRCdrK8lSaYlXsJiYSHnUXbVG-0-619be5158e99507208c40ed2dbbca3d0)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1739656782-9DN4xCztk060LDPy5WZuAqUeVa6hRvkB-0-137d45eeb2cbf307710712114da9e8f9)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1739656782-I9Tm4HlGC1ei8ZkBwBy1vWN9MVZedfqo-0-634c2b81dc9629790b80cfb72289a037)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1739656782-0X4B2K3R7b46pZ2IEAAvDkIpZvi5fjMg-0-015e7165d39bbcdcf2d1664dc79312b3)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1739656782-Iqgh3UxJGsKxDl2Vg5ETwh1BAXBcAwNj-0-b7d5a469b157ffc9eeff990b321278bf)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1739656782-mLI6pFJ9NKn9OBx718LDEQryQn2D7wGw-0-d99e9b5d99a987582d87e91156bd3dd2)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1739656782-KqRIOWpSP5OgT3Rm5E0OaVHE9pMMjj2b-0-3daaeaf013488dbc870ee60fdc7800d3)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1739656782-9OpwQvgHyGQrAANWO7d1fRstseeVSdkD-0-7d804679ad7034ee78109dd53b154b86)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1739656782-Bml4BDtByD2nj7lPWNYEJWShSjAdzrB1-0-e5de2872562c3035b8654742c0ede259)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1739656782-OZ14ZgalnX29oUR3iIT5toNOzmLA0pS5-0-80766a47c39d8dfff7434ac8bc02b174)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1739656782-jZpDSSCQ9tdXU9gCjzq4x3C3ezctt4Qt-0-f379c24cb3ccb3f26c359decaee05167)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1739656782-tdFiGhze2qAH5075aP3w97XF8FLKFsAo-0-01a9a95e8f0fbb37aab193c76c7fafaa)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1739656782-HMl02bou4HOUrdcXlEoL6tnPMSslhuR2-0-f820aea100d98c1a23cf6935525355f2)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1739656782-jMBzJVHCInirrQFJ79bwcpXev1QuG58e-0-b04b83590092a35c635e981e3cc15aed)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1739656782-0eUx1T55bt2eI6y9WLf7oKJH8eFlsd7a-0-5df694707b9fd2b9b16bd69239d26dbe)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1739656782-3Ie8c7DGA8qnRhw3kT8gr30yO3O4EfEJ-0-52fa6823f55f785918b5347537370194)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1739656782-pTDPJw5HRcNHUu1xeV1Ww9XyrDX70KHx-0-6d37f06c8a8d53f501b6713dd6f384e6)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1739656782-UiKmOmjcEc085DnhY6cWtUyfOJiCIF8t-0-8dc694aacba9e3f44ec81b4f2546f44d)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1739656782-j29BYEHrlA64si20vyLFU2tIRE4sJhCF-0-afc73cf41cf7589cfe378b14b69c9cf3)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1739656782-ZuMuSks9OmAguIwy7FtXN56F04XGPPoe-0-6427a10241b12cc57a6c5031bfe5ed5e)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1739656782-0GDPASFHA2hNnBh2ylhGmZ9OxA2UwDjv-0-6f9514b131333c780d0f67aa9a420515)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1739656782-HewDM5u0KYxqfHIsd182bMXngalusYhO-0-32e2bdb08e8a7384839e5247e60d8feb)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1739656782-dvFwhNbVBj86BLL2vrsV25ujca6fCNoq-0-ffd46cf67cada509e635fcf6585dfd16)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1739656782-SfEcaPXFAGettJY6qeM4npmmO6ku6i7W-0-a57bbf2281007fbe012dc2857b23a8e6)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1739656782-Ex0kUNAfxayC6IdxdpRvsqKrKQcp9D95-0-d793107abf97ef7e72b631433751a30f)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1739656782-owayJIebQNNLKw3NVl5oAKD1CHCxvYVu-0-46e9b6760f7b71746756cda2e618c51d)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1739656782-j7Uowdz5Y5rZPeVvLuo5qxygYhfJyeie-0-58070e8ec80c9a8d04052887f6947a27)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1739656782-Hg4f1WsFq9ClPCAKINrcrZw4YfD2M5qT-0-8eabe939120e3c65f9811400f28053cf)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1739656782-l3TwCA1I0vlY1mAWP4gApQQE7Gwg1tSb-0-2099a2e28f1f98eac141ee4d23b24cdf)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1739656782-ddiBtMufxWu9OGJzOX87jnMwyeodP0VY-0-aac19cbdfd8ffd82b7e759b87ee35027)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1739656782-HWUQYpfCBNphBkU4VRaubnXWhwXPr47V-0-9ea57478f780b4c7388c7118e2d57888)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1739656782-63LwpCq2wyXBUjPCJ7rU1NAni9BxaC9o-0-5734ec2b57ebd21303da569962c5ebda)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1739656782-SOlI00unXgqZw9oVPYYXkE1HFVeYSJRb-0-a2835dd7391c4e4be2093b352d8d1168)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1739656782-iJOf51s7LrD8B0Tr74XiPgwyN8rpj1LD-0-9922d904b6a54181e87dfea41f1505ea)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1739656782-7hWh5cM8QxCXSJbF5qX11jBbzbxQP61i-0-6dd3176e302b578dac1d357b4efbb7a7)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1739656782-uY0fFT0wuzuLMPbcJEvSXoCmzBQNKqEd-0-296868aebff8712a94cd02dfb7c4dcce)
就得到定理中的计算公式.□