![伍胜健《数学分析》(第2册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/603/27032603/b_27032603.jpg)
第7章 定积分
1设f(x)和g(x)在[a,b]上连续,证明:其中
[哈尔滨工业大学研]
证明:不妨令.当M=0时,f(x)≡0,结论显然成立,所以不妨设M>0.
∵g(x)在[a,b]上连续,从而一致连续,所以,当
时,
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image013.jpg?sign=1739195784-5H0iQxQXr9jhon2oyaIXCSg25JDtuA7D-0-4ca2bc9318f2e77ebe498801ccbb1d4f)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image014.jpg?sign=1739195784-GGpwqlSBxBIVl5j9c3Tb6FIkneNnWPgk-0-e1ef78a22e6825b794bd54fb8cac021e)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image015.jpg?sign=1739195784-EGkk4Y5iCstTGvRYlmME6zjCAM7F9Sec-0-ac47f31c03f9a507d9a75edb23fc2628)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image016.jpg?sign=1739195784-L9T8HL7M44P3MqcqZodp4SCXNTrHnNVd-0-911e13cfe6791a039d496dce91841660)
由ε的任意性,可知
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image017.jpg?sign=1739195784-kqgb8deXCKa1U5XsSU1BCmgm8zwsaOTH-0-f7e92f81e40a89c92aed131f80b56c0b)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image018.jpg?sign=1739195784-HxXzsdpBUitFOzeRsuUa8HhW4vAh0C2f-0-f74cb90f0ac7a6564f1e0e424ee65f1b)
2设f(x)及g(x)在[a,b]上连续,f(x)≤g(x),且证明:在[a,b]上,
f(x)≡g(x).[湖南大学研]
证明:设F(x)=f(x)-g(x),从而在[a,b]上,F(x)≤0,且下证F(x)≡0,
反证法:若不然,,则存在
,使在[x1,x2]上F(x)<0.从而
其中
,得出矛盾.
故在[a,b]上,F(x)=0,即f(x)≡g(x).
3计算.[上海交通大学研]
解:作变换,则
,当
时,
,当
时,
,所以
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image034.jpg?sign=1739195784-sQYwSvzJ5mRoc8FKEH5oVOB3sQSO3Bc9-0-8e1d56ff06058f51e68b9396698c0303)
4设f(x)连续,且
有
,求x≥0时f(x)的值.[北京航空航天大学研]
解:由得
,方程两边对x求导,得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image040.jpg?sign=1739195784-FdzL4FiJtM4PULDIQx5lqGVhgMl5dEs7-0-face823235398046a4aedd5738bdc9b1)
而x>0时,f(x)>0,所以,从而
(c为常数).
又因为,且f(x)连续,故
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image044.jpg?sign=1739195784-J1STxVmaFvbXmFojPcE51r7NNOQNBNVf-0-65c56c52a427ebf89a1fb2bfa66560cc)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image045.jpg?sign=1739195784-yrda7DbswXEgFZl6qcHAlFnOIrdbbjia-0-2baba570ad70eb5f7198ccccc53aaa9f)
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image046.jpg?sign=1739195784-gOcYZtfnD22BoqvoTMdl1owQMOfMX4Lc-0-927d49ca7f10f6603fea1f2cc5c18339)
5给出有界函数f(x)在闭区间[a,b]上Riemann可积的定义.试举出一个在[a,b]上有界但不可积的例子,并给出证明.[上海大学研]
证明:Riemann可积的定义:设f(x)是定义在[a,b]上的一个函数,J是一个确定的实数.若对任意给定的正数ε,总存在某一正数δ,使得对[a,b]的任何分割T,以及在其上任意选取的点集,只要
,就有
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image049.jpg?sign=1739195784-JcfM0SRlmicMRbhV8IND9FK6tSln8OoQ-0-362931c44844f59d2a99054fbdf59ea2)
则称函数f(x)存区间[a,b]上Riemann可积.
在[a,b]上有界但不可积的例子:
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image050.jpg?sign=1739195784-bpid3toIP66ChcczZNGHsUeGB98dPaEo-0-692f1eae6470524ae6b67746e5e79e18)
在区间[a,b]的任何部分区间上均有,所以
,它不趋于0.因此f(x)在[a,b]上不可积.
6求定积分.[上海大学2006研]
解:由于是奇函数,故
,从而
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image056.jpg?sign=1739195784-nC1FLKVHEXXL4vQHZdetTXVeqKdB03Tk-0-5befa4bb9fda85bf6b3b9e95ff102913)
7求.[南京理工大学2006研]
解:做变量替换,则
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image059.jpg?sign=1739195784-0QD7Akraen5y5i8fRD2crPVeREoqsoko-0-fd9093c8e557242abc9b22198da24c6a)
8设f(x)为[a,b]上的有界单调函数,证明:(1)函数至多只有可数个间断点;(2)讨论函数在[a,b]上的可积性.[江苏大学2006研]
证明:(1)设D是f(x)的第一类间断点集,令,
,则
,故只需证明A、B为可数集即可.以A为例,对任意的
,选取有理数
,使得
.再选取有理数
和
,
,使当
时,
;而当
时,
(此由f(x)在X有单侧极限可知).因此,对应法则
是从A到
的一个映射,而且是单射,这是因为若有
,
,使
,
,
,则
.注意到
,不妨设
,于是可取
,那么由前面的不等式,就得出
的矛盾.这说明A与
的一个子集对等,由
可数,则A可数.
(2)设f(x)为增函数,且f(a)<f(b)(若f(a)=f(b),则f(x)为常量函数,显然可积).对[a,b]的任一分割T,f(x)为增函数,f(x)在T所属的每个小区间上的振幅为
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image088.jpg?sign=1739195784-Lv4ti5mNHIEFzPIjt6LTFjunymrQ8dLR-0-31b6a5d0dcd5b245bf073a24fc5d59f2)
于是有
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image089.jpg?sign=1739195784-ZRVAYZT68Hvl5FScNMFDuevE8QDdVbVj-0-5d4cad49db114e74712b17d92ab9cde8)
由此可见,任给ε>0,只要,就有
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image091.jpg?sign=1739195784-y8ZyR928H33FD7HcLvzwROGPQoZnOtYb-0-2d257a89055bd86dccbf8c287dcb8661)
所以f(x)在[a,b]上可积.
9设f(x)在[0,+∞)上连续有界,证明:
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image092.jpg?sign=1739195784-GWn8XOWfIHlgGYTAeowf8HqqQgdEk7X1-0-7980a092b96a8895c8d66126603f4807)
[华东师范大学2006研]
证明:记.显然有
,又
,故对任意的
ε>0,存在,使得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image097.jpg?sign=1739195784-AhS7fOgEbN4qiWELEBsgv1l0wdSQGasx-0-f80b41352b4d7d41f75bbe71d7abb004)
由上确界的定义知,对上述的ε>0,存在,
.因为f(x)在
处连续,由连续函数的局部保号性知存在δ>0,使得
,
.于是
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image103.jpg?sign=1739195784-dXPT5NExBEwLpZUPdlXjnURJPUA08Ii4-0-06f93757d4badd52a7cea1257171ff56)
由于,所以存在
,使得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image106.jpg?sign=1739195784-coStN6qVOPgPZd6NV5Nvetv84Cp9vBFv-0-b1ef327dbb09c1174c50de78b42c76de)
取,则有
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image108.jpg?sign=1739195784-jdKWH78JFIZr1fTHRzWlRnAZKQtXqKvu-0-8d4f12a061c4aecfd60593e6e120b9f6)
即.
10设函数f(x)在[a,b]上非负、连续、严格递增,g(x)在[a,b]上处处大于零、连续且.由积分中值定理,对任意自然数n,存在
,使得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image112.jpg?sign=1739195784-R58rUh9FKLVdFJq0FK9sSN2bSnXzJLuq-0-7426dba07465300661f1f4d7560ff110)
求极限.[北京师范大学研]
解:因为g(x)在[a,b]上处处大于零、连续,所以存在c>0使得当时,有g(x)≥c.从而对任意的ε>0,有
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image115.jpg?sign=1739195784-Df6y1IQ1C8AKw8q1Xzk40m4NYfURZPSJ-0-ab1884fd668d02754ce459b6bc1916eb)
由于,又f(x)在[a,b]严格递增,故由极限的保号性知,存在N>0,使得当
n>N时,有,于是
.又由f(x)在[a,b]上严格递增知,当n>N时,有
成立,故
.
11设函数f(x)是[-1,1]上的连续函数,且有,
,证明:至少存在两个不同元素
,使得
.[北京师范大学2006研]
证明:反证法.假设f(x)在(-1,1)内至多只有一个零点.若f(x)在(-1,1)内没有零点,不妨设f(x)在(-1,1)内恒正.由于f(x)在处连续,故由连续函数的局部保号性知,存在充分小的δ>0使得当
时.有
.于是
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image128.jpg?sign=1739195784-HWEk29gvYZu0nieDaQWEmwm4C70TpJT1-0-256088504835f79b9a69b27c25cd1504)
矛盾.
若f(x)在(-1,1)内只有一个零点c,则f(x)在内恒不为零.若f(x)在
内恒正或恒负,可以类似前面的证明推出矛盾.若f(x)在(-1,c)内恒正,在(c,1)内恒负(f(x)在(-1,c)内恒负,在(c,1)内恒正的情况完全类似).由于
,
,所以
.令
,则
,且g(x)在
内恒正,往后类似前面的证明即可推出矛盾.
12设f(x)在[0,1]上Riemann可积,且,求
.[浙江大学研]
解:因为f(x)在[0,1]上Riemann可积,所以存在M,使得,则
.
则
.
13利用可积函数条件证明:在[0,1]上可积.[南京师范大学2006研]
证明:对[0,1]做任意分割T,注意到f(x)在[0,1]上有界,其不连续点为且f(x)在[0,1]的任意区间上的振幅w≤1.对任意的ε>0,由于f(x)在
上只有有限个间断点,故可积.因此,存在η>0,对
的任意分法,只要
,就有
.显然,
,则对于[α,β]的任意分法,只要
,就有
.
令,设
是在[0,1]上满足
的任意分法.设
,由上述证明,有
,显然又有
,所以
.于是
,则f(x)在[0,1]上可积.
14设a>0,求星形线,
的全长.[汕头大学研]
解:由,
,可得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image164.jpg?sign=1739195784-bKVBl8eaIMpC6BFgljb0MkKW0OqrZi47-0-24efb95a5eeff03e2f6811330c62321d)
于是全长
15求由抛物线与直线
所围图形的面积.[浙江师范大学研]
解:因为的交点为(1,-1)与(9,3),所以由这两条曲线所围图形的面积为
,其中
,所以
.
16求由圆柱体与
所围立体的体积.[重庆大学研]
解:垂直于x轴上任意一点(x,0)的任意截面面积,则由对称性可得
![](https://epubservercos.yuewen.com/EA0609/15436378404486606/epubprivate/OEBPS/Images/image175.jpg?sign=1739195784-6puacPvq38CiIrePosXmMEJtEEikYv49-0-d449fc1162148f146babdf605e6d6c8e)
17设摆线,
有均匀密度,求它的重心.[中国科技大学研]
解:设重心坐标为,则
.