新型含铝奥氏体耐热钢材料
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Yamamoto Y, Brady M P, Lu Z P, et al. Creep⁃resistant, Al2O3⁃forming austenitic stainless steels [J]. Science, 2007, 316 (5823): 433⁃436.

[2] Brady M P, Magee J, Yamamoto Y, et al. Co⁃optimization of wrought alumina⁃forming austenitic stainless steel composition ranges for high⁃temperature creep and oxidation/corrosion resistance [J]. Materials Science and Engineering: A, 2014, 590: 101⁃115.

[3] Trotter G, Baker I. The effect of aging on the microstructure and mechanical behavior of the alumina⁃forming austenitic stainless steel Fe⁃20Cr⁃30Ni⁃2Nb⁃5Al [J]. Materials Science and Engineering: A, 2015, 627: 270⁃276.

[4] 吴晓东, 吴刚, 朱晶晶, 等. 含铝奥氏体耐热钢的高温抗氧化性能 [J]. 金属热处理, 2016, 41 (08): 1⁃5.

[5] Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high⁃temperature creep resistance of alumina⁃forming austenitic stainless steels [J]. Materials Science and Engineering: A, 2015, 622: 91⁃100.

[6] 孙胜英. 合金成分设计对含铝奥氏体耐热钢组织和性能的影响 [D].北京:北京科技大学, 2019.

[7] 范吉富. 一种700℃以上等级超超临界电站锅炉用奥氏体耐热钢的研究 [D].上海:上海交通大学, 2016.

[8] Yamamoto Y, Brady M P, Lu Z P, et al. Alumina⁃forming austenitic stainless steels strengthened by Laves phase and MC carbide precipitates [J]. Metallurgical and Materials Transactions A, 2007, 38 (11): 2737⁃2746.

[9] Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep⁃resistant austenitic stainless steels [J]. Scripta Materialia, 2007, 57 (12): 1117⁃1120.

[10] Yamamoto Y, Brady M P, Lu Z P, et al. Alumina⁃forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates [J]. Metallurgical and Materials Transactions:A,2007, 38A (11): 2737⁃2746.

[11] 徐向棋, 吕昭平. 新一代新型抗高温氧化奥氏体耐热钢的研究进展 [J]. 中国材料进展, 2011, 30 (12): 1⁃5.

[12] Brady M P, Unocic K A, Lance M J, et al. Increasing the upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor [J]. Oxidation of Metals, 2011, 75 (5⁃6): 337⁃357.

[13] Jozaghi T, Wang C, Arroyave R, et al. Design of alumina⁃forming austenitic stainless steel using genetic algorithms [J]. Materials & Design, 2020, 186: 16.

[14] Brady M P, Magee J, Yamamoto Y, et al. Co⁃optimization of wrought alumina⁃forming austenitic stainless steel composition ranges for high⁃temperature creep and oxidation/corrosion resistance [J].Materials Science and Engineering:A,2014, 590: 101⁃115.

[15] Yamamoto Y, Santella M L, Liu C T, et al. Evaluation of Mn substitution for Ni in alumina⁃forming austenitic stainless steels [J]. Materials Science and Engineering:A,2009, 524 (1⁃2): 176⁃185.

[16] 董楠. 合金化元素对新型含Al奥氏体耐热钢/氧化层界面结构形成及结合能力的影响 [D].太原:太原理工大学, 2017.

[17] 高秋志. 新型高Cr铁素体耐热钢相变行为及焊接性 [D].天津:天津大学, 2012.

[18] 雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用 [J]. 科技创新导报, 2009, (08): 2⁃3.

[19] Hayakawa H, Nakashima S, Kusumoto J, et al. Creep deformation characterization of heat resistant steel by stress change test [J]. International Journal of Pressure Vessels and Piping, 2009, 86 (9): 556⁃562.

[20] Takeyama M. Novel Concept of Austenitic Heat Resistant Steels Strengthened by Intermetallics [J].Materials Science Forum, 2007, 539⁃543: 3012⁃3017.

[21] Yamamoto Y, Takeyama A, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates [J]. Intermetallics, 2008, 16 (3): 453⁃462.

[22] Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high⁃temperature creep resistance of alumina⁃forming austenitic stainless steels [J]. Materials Science and Engineering:A,2015, 622: 91⁃100.

[23] Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina⁃forming austenitic stainless steels [J]. Materials Science and Engineering: A, 2010, 527 (7⁃8): 2079⁃2086.

[24] Trotter G, Rayner G, Baker I, et al. Accelerated precipitation in the AFA stainless steel Fe⁃20Cr⁃30Ni⁃2Nb⁃5Al via cold working [J]. Intermetallics, 2014, 53: 120⁃128.

[25] Wang M, Sun Y⁃D, Feng J⁃K, et al. Microstructural evolution and mechanical properties of an Fe⁃18Ni⁃16Cr⁃4Al base alloy during aging at 950℃[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23 (3): 314⁃322.

[26] Asteman H, Spiegel M. A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700 degrees C ⁃ Oxide solid solutions acting as a template for nucleation [J]. Corrosion Science, 2008, 50 (6): 1734⁃1743.

[27] Boulesteix C, Gregoire B, Pedraza F. Oxidation performance of repaired aluminide coatings on austenitic steel substrates [J]. Surface & Coatings Technology, 2017, 326: 224⁃237.