![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1739658283-VzhmZ7jC50yIVqtuAHg8kT46YXsD1zmY-0-f9d6427ef92b5ffe5c657e2255ceb9ec)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1739658283-24vZspVNHXGoOHshIuVpuXblXmgJo4ik-0-6ad48b69b3b825355f3e855a691ebace)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1739658283-MSm5FJj0GZcPUc1CgDYEo6ENfsja4fvZ-0-06035752f5a833504e3ed51c3fc3755e)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1739658283-RB0kKgdQWcTQRdIKF16KXsRTGqKv7VjO-0-3baf04c4e6eaacbc7685fffa6f428423)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1739658283-6MZw16Z7Gvlv7aG7BEZFZjrozZRRAULg-0-b14acbbca8d816121484396e686d47ae)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1739658283-GwkdgBfv4zPfcn9xWiMBx15hp9AG7ViI-0-86a31aaac1122ac5159c115cef6e1e26)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1739658283-IFzpjSykhB5A08nTtisnAWOygpiDv24x-0-c5bc9a504f688cc3d13bfea5450a45fd)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1739658283-6UrfLq9hMYSikfsaM5OTRvtyvZ8MgNtb-0-107f92445a297597078b538e421f6803)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1739658283-TKM3UIFd8QWAapyn3OwtAhhnggg9LARH-0-a59f40be3849c3e18c496e27602bf5e4)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1739658283-P8SkSJoDzgSs9AuI3G6hiiAVt5SOOVbg-0-e0156cc8ae2f2f275bb25ad3360510fc)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1739658283-K5Axb8FuxaUbOtQRXVmHBtdAXpvx3Jk0-0-4003e000191f53820c602903a357d7a3)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1739658283-L00NiaORIZPwsdU7jqEekoDnHcJ81qlS-0-a6232fded76f61c503a9620232d0e1dc)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1739658283-JoyzRP2m2OK29ch8wOgJ4VvOVaNkq6NT-0-dc69619fe803f5d7b4dcbbf6917022d8)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1739658283-JpReCsIF8vy06FtoHhhGhLA7QpLbt8sq-0-4fa109e08ae0d6d23ffcc9b3dd4a758e)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1739658283-4Oub9qppFzq9J53cpUdlhXSVcHg5NPji-0-c90f7c95562abccc64fe4cb2b085f39b)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1739658283-NcWiU36YWDZxkxAk5hgoE5NV7GQcNtSe-0-1b78a7f521ace0d2530951df271e8ca0)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1739658283-4bqRx77Cpoj74MTWms8q2h6QL0BJfEUJ-0-4ff7b30b2b3202ccb58cf611ea787d03)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1739658283-XQvswLy0QeKbBkwmo4q77Y8nkwrVmJMQ-0-6328acdb3bcafa9c97fc4294ca0d9c19)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1739658283-eiUk6xTAYfKkiSYb4A0OkOsoU9R8VwKQ-0-f9d22c1a8297745c4106fe0026a5eae3)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1739658283-9M8dSXBY8f8aKHuBX5iZLQIRTqul0sUu-0-a40dc08c3cac965c1211dc87fd6169cf)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1739658283-58Yf1QTwcUyznLlH0EPj2Fird1FDeukE-0-0f949c7f517e2ff91a57107799cb2ac4)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1739658283-NfMenXfBI5jfhuNTGgRkn8FAh2ft0XTp-0-e3dead949d3f6f35dabbdd280f3b8043)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1739658283-zi5MqKbRphXT6pEM7LxM9ZR9WNpWEe5H-0-825727f866303574427580d7f13dddfb)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1739658283-ecSlElTbwbLUmIKkQjQf2RqhXTfLtzvv-0-cfbba77c6b5239b318c5fdc3afffcd4b)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1739658283-OHt7L5Ow937yTV1GUw4JkfYOkV19JWBd-0-c359197dfa35fd1a7fceb6b94ebda674)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1739658283-d3SViLGx9ZDPak8HJyza5xxu1AoTDg5d-0-e2e782e272d9ec28db2162f5ccb1b729)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1739658283-qUS34BOjv8QV4Z1Gib2a10m4ZDN5c7EL-0-259fcdeda4c6cf11bb2715fe1a86b1d7)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1739658283-VwPV67b9G0t6ZUeSVkIZTGv00Ye73WCV-0-80badd3823593cbb8e2e07cb6dd63a1d)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1739658283-e72YafZXFwpakvqaRKmmDSLfwFfoNkW2-0-b4cc6a9529e5b8f59c16b3bd017bd571)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1739658283-J3zVA5oeOe8DN2c9ArynWznERRPC7Rj7-0-8717f954280bcd498ab760b0c2db93a6)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1739658283-McpfaV0Z4LOCS3LOKdfbKaX2YUfnDUSJ-0-76ae6494938f6df28aeb4494f340af5a)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1739658283-FiVlS0ci33hXcsKflVCm0qM2zUoTd6yW-0-8b935189a922a5f9dba04376e3fad589)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1739658283-b4sqkBcBCEbogA7xDpCp3SpX5SlsPedK-0-627527845569106d9659eb99c1d7ecc5)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1739658283-NZsZMvcCdUeJqoNEGYHwNNIvHTn5PdAK-0-d5436d47d332f0a286838f59840c3a42)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1739658283-LluD8zxqEHz32qNmyyYGT2TB1V9ih9Il-0-44aa77114e54d6fa2e4f532cdd402dc1)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1739658283-yB2DtpGvE1jJuR30wZ71Gk1IS9cH6o16-0-725177d4a717583c0ab67ca53bf2060f)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1739658283-sylimtxGWVxb4zStGiYL9Okm4FA8cHqN-0-d48ad13ce70a87442ceefe0a99e738a3)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1739658283-ILMHaK49ZcHhWkMpyTQhyzGSsUlnUnPo-0-0e80b46a74b0d6004b32466b5512ce3c)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1739658283-RnrwXkwP6HX9UBgp8YvqKIJrAwF2nu3A-0-f2890167eaf94f26707e59f59f2999b6)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1739658283-Yy3HnMuzCnMlXEjRqXjIOZV4p65uYUvu-0-97eadd8509ad7cab833909d5d5b02068)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1739658283-ucj6G4OmboBrG8wXniG7OTUsmfziSHPy-0-094bd36378181fca205e1176bf4d408c)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1739658283-M2FRRvphLXOXGsn0n4J2SNnTbpRvHtgW-0-e0d3e3a4490f9a5f187fe91cec1f1082)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1739658283-QoulsiEVZTVstdbEs8S4oez1aRaxYnzf-0-89fe844ddaada0353a1515e6ea38531b)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1739658283-eHusKjf5Q0LQOhmFkrVNnttyl9zAhFR4-0-ffbe8e0dbb0840704472d341e700f53c)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1739658283-qf4Rq3CZR5IlzprRKTOAl7QdDmIJ3TLU-0-ac920d4ec9eb21a1d0f7f154444d71f4)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1739658283-l3REhwoWZ7uqRULbgIl3cZMQMS6mnlUc-0-69426b007904db5f1d27fc204328f554)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1739658283-BWKkwHtfyPU6l1taIKCoMeLIG5rBcRtW-0-22ebac724172ea79ef434a49de01c3e5)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1739658283-VPVxZJpcJxyJ8bjdqHBuRNe1xFH6ePic-0-223aa62c54b5668b8fa16d01349cafd1)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1739658283-E4fc7UBzKX2y4xkGPZyLhrmPGbMzNmal-0-fe49c45f845dcfd8a05a969a066748e4)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1739658283-ucx8RucSF7vgtmJP2ay9hjXWB7j6ETed-0-7d19aad75e04735257c096f7fcfd5bdd)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1739658283-Sy3VLWGfqrPiq0d4ECYbMrDD79S71Vsm-0-a1ed0c4a400e1ae4f768a3dae7658380)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1739658283-IRsfP8DkHcnX1FkCLQvK5WxsS9Qh9zNP-0-9eeaf7213aad96a7212361a157a4e4d2)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1739658283-HopqMj4fcFAZL1amkbxvuC2QrdWIPuZ8-0-384019520db3bf8b85e0bebfc7534227)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1739658283-Y41hzdh6F8RqNWPLtijM3ZrlQeHU1QiC-0-2edef2bf7f48b19a82e0100dce0fd980)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1739658283-wOu60LqyNkCZ4CJjjEvzVuA2ZYodKXcD-0-9db1c6cb3dab42515ddc668270a3cef6)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1739658283-y1CGh6TlYn7LC2H2vMp2Y2UCKlAXV2Je-0-88bc0d043ec7fa8ea81776dd8b9aeef3)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1739658283-T0R1cdd1izJZ8j9wXjBdDir5wWFRuEJR-0-60a8140a35b895d7936fa3b5e986c721)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1739658283-0WbxLtgjR3wS0UqS87OsRG85zifY9e2M-0-50ded8534b1ddf8c79e88f2cd47fb8c6)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1739658283-d1F8wDf8uMfKxxl0pqJqZz7VUXl2aclD-0-3d1e8832e7ade6c2998bbaeb695c5ebd)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1739658283-yz9NOy9hlaCcTO9z7yXuWzLLibXCT8yU-0-94a3747b09aab2ad254f1ac7c6b06f68)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1739658283-9pPbbhf6fm7g79D6fAbci6F3zCle6s8V-0-1a14a932ea44ffdad60815a661d516f7)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1739658283-o6RJ1sNj4a7se8jn2EeUH34Va5l7bbZL-0-a17f4ec80d83a9b3de0cd5cf59fcaf52)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1739658283-gfDQ1KfHeXbU5cKdDfeXgrhiLo5GdZWz-0-c12642e1ae7fe940a2cc8d32b29dfbd6)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1739658283-BwUuANrKXTeOllLlimnKVctAI6rQLPZd-0-4235e3d7bc239467400d1b356b47aff1)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1739658283-AxuViVzNzrr5j3WP7aD8MARFNPfMSJKV-0-a15ff860e019c13e1767db586059383d)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1739658283-nufbjvwqnMs0lIqSU71nqcL3zPbmQZph-0-9c6d928bb385a6be7f8f5812ab9fb163)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1739658283-IwgZoowpkPz1wO2msseY56v4MwBe3cyB-0-2bd36744cb9d848bfb0e7fc1d5beeef4)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1739658283-eSeHWGMkZ56d05fFgsB3an5orw939SU6-0-24fbb7d31b4a57753e73e361a49f0e62)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1739658283-XNzObl38iTDbaikz1ejwGXuJDye9GDA8-0-e96009be6b7bd77d649f77a3eea46c04)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1739658283-qwV4kpm3jtRItL3fSizu683pq9h9gsjT-0-198bcbd878dd8b73d96a1c7b4a71594e)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1739658283-q0cZ8gzctn4WTi5MtplQgICgZmX8dds2-0-bc4b9fcf3eff614ade02190516fa85c4)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1739658283-avn0vjnZoCzTiwa9wBfH95pHbf2oe5DK-0-e50d881b52edadb4284b862523a9d1d6)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1739658283-NktroxZDoCUQjgcxFGlqk5ldj5e8hSA2-0-3871239e321c3a81379dc9a6735ddf75)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1739658283-f6oMd0QfLZi6Z9OMfNMyLXymicmOBNTR-0-2522ab7a8c70f8cc11d3505b492b7b06)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1739658283-Nvnr1ynWxqogbokzUyK6baycOr2eON5N-0-e447081ca08b4a764b8e20e5d709764d)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1739658283-DoZCSidF62qbmpeM2Q99UVclAFVPBkfs-0-5d3900612f09f9966e4cdfa8e4f73180)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1739658283-S06ylFnDnmVnICA7AYmIYf71JoHz0HEZ-0-7504b8f981fb50047ddbdf8a79fe3d17)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.